Flexible Page-level Memory Access
Monitoring Based on Virtualization Hardware

Kai Lu Wenzhe Zhang Xiaoping Wang

Science and Technology on Parallel and
Distributed Laboratory, State Key Laboratory of
High Performance Computing, State Key
Laboratory of High-end Server & Storage
Technology, College of Computer, National
University of Defense Technology, Changsha, PR
China

{kailu, zhangwenzhe,
xiaopingwang}@nudt.edu.cn

Abstract

Page protection is often used to achieve memory access
monitoring in many applications, dealing with program-
analysis, checkpoint-based failure recovery, and garbage
collection in managed runtime systems. Typically, low over-
head access monitoring is limited by the relatively large
page-level granularity of memory management unit hard-
ware support for virtual memory protection. In this paper,
we improve upon traditional page-level mechanisms by ad-
ditionally using hardware support for virtualization in order
to achieve fine and flexible granularities that can be smaller
than a page. We first introduce a memory allocator based
on page protection that can achieve fine-grained monitoring.
Second, we explain how virtualization hardware support can
be used to achieve dynamic adjustment of the monitoring
granularity. In all, we propose a process-level virtual ma-
chine to achieve dynamic and fine-grained monitoring. Any
application can run on our process-level virtual machine
without modification. Experimental results for an incremen-
tal checkpoint tool provide a use-case to demonstrate our
work. Comparing with traditional page-based checkpoint,
our work can effectively reduce the amount of checkpoint
data and improve performance.

CCS Concepts o Software and its engineering — Virtual
memory; Allocation / deallocation strategies

Keywords Memory access monitoring, Dynamic, Fine-
grained, Virtualization hardware

1. Introduction

Virtual memory page protection is often used to achieve
memory access monitoring in application scenarios concern-
ing program-analysis, and checkpoint-based failure recov-
ery, etc. Current monitoring mechanisms can only efficiently

Mikel Lujdn ~ Andy Nisbet

School of Computer Science, The University of
Manchester, Manchester, UK

{mikel.lujan, andy.nisbet}@cs.man.ac.uk

monitor modifications at page-level granularities that are di-
rectly supported by memory management unit hardware. In
this paper, we introduce an improved page-level monitor-
ing mechanism that additionally exploits virtualization hard-
ware support, in order to achieve fine (sub-page), and flexi-
ble memory access monitoring.

We introduce a mechanism that exploits both i), hardware
support for page-level protection, and ii), virtualization, in
order to improve on traditional page-level memory access
monitoring. The main work and contributions of this paper
are listed below:

e First, we introduce a memory allocator that spreads ob-
jects sparsely in different virtual pages that are abundant
on modern 64-bit CPUs. Based on virtual page-level pro-
tection, we can achieve fine-grained object-level access
monitoring. Physical memory usage is reduced by map-
ping multiple virtual pages to one physical page. As a
result, multiple objects from different virtual pages may
reside in the same physical page and be monitored inde-
pendently.

¢ Second, we rely on the additional page table (in this pa-
per we refer to it as the extended page table (EPT) (Intel
2013)) provided by hardware support for virtualization,
to dynamically adjust the granularity of monitoring. In
this scenario, any address used by a virtualized applica-
tion goes through two levels of address translation (guest
virtual address — guest physical address — machine ad-
dress). The two levels of address translation provides the
flexibility to dynamically move two or more objects (in
different virtual pages) together into the same page, and
vice versa, to divide and separate them in a transparent
way. It is this functionality that enables dynamic adjust-
ment of access monitoring granularity.

e [ast, we introduce a process-level virtual machine and a
runtime memory allocator based on Linux. The process-
level virtual machine is a Linux kernel module that man-
ages the extended page table. Any application can run
on our process-level virtual machine without change. To
the best of our knowledge, this is the first work to use
virtualization hardware (two level address translation) to
implement flexible fine-grained sub-page memory access
monitoring for native (C or C++) programs.

Our work can easily be adopted to better support exist-
ing tools (such as program analysis, and incremental check-
point) that rely on a traditional page-level monitoring mech-
anism. To test and demonstrate our work, we developed an
incremental checkpoint system. Compared with traditional
page-based incremental checkpoint, we can greatly reduce
the volume of checkpoint data and improve performance.

The rest of this paper is organized as follows: we intro-
duce background information on paging/virtualization, the
design, and the implementation of our system in sections 2,
3 and 4 respectively. We discuss the use-case of incremental
checkpoint in Section 5. The experimental results are pre-
sented in Section 6. Section 7 discusses related work, and
section 8 presents our conclusions.

2. Page Level Memory Access Monitoring &
Virtualization Hardware

In this section we introduce background information to help
place our work in context. First, we introduce current mech-
anisms for achieving memory access monitoring based on
page protection. Then we give a brief introduction to virtu-
alization hardware (Uhlig et al. 2005) (AMD 2005) that we
exploit to achieve fine and flexible granularity.

2.1 Page Level Memory Access Monitoring

CPU memory management units provide hardware support
for virtual memory (Appel and Li 1991). That is, applica-
tions are coded and executed with virtual addresses and the
virtual addresses are translated by a memory management
unit (using a page table) to physical addresses that are fi-
nally used to access physical memory locations. Currently
this translation is done at the granularity of page. Page-level
protection achieves memory access monitoring by changing
the protection bit in the page table entry of monitored pages.
Accessing protected pages will then trigger a page fault. It is
fast to do this because the paging mechanism is supported by
hardware. However, page protection can only detect modifi-
cation at page-level granularity which is its core limitation.
For example, the deterministic multi-threading runtime sys-
tems Dthreads (Liu et al. 2011) and RFDet (Lu et al. 2014)
use page-level protection and page mapping to monitor and
redirect memory accesses but they introduce considerable
overhead on deciding which part of a page is modified. For
example, additional software and storage overheads are in-

Vmenter

VMX-ROOT

Virtual a\llddress |

VMX-non-
ROOT

Guest Virttial address

-
Vmexit, page fault,
Interupt etc.

Page table J

| Page table J v
Guest Physical address
v

| Extended Page table J

2
Physical address

v
Machine Physical address

Figure 1. Hardware support for virtualization.

curred in order to compute diffs for each modified monitored
page.

To summarize, page-level monitoring mechanisms can
only efficiently determine which addresses are modified at
page-level granularity.

2.2 Hardware Support for Virtualization

Pure software virtualization for x86 is expensive, especially
for memory virtualization. Intel and AMD have both devel-
oped hardware support for x86 virtualization (VT-x from In-
tel (Uhlig et al. 2005) and SVM from AMD (AMD 2005)).
We focus on describing Intel’s VT-x support for memory vir-
tualization in this section, as it is directly used by our imple-
mentation.

As shown in Figure 1, VT-x introduces two new CPU
modes: Vmx-root and Vmx-non-root. The Vmx-root mode
is designed to run a native system and has access to the full
instruction set architecture, whilst the Vmx-non-root mode
is designed for virtualized execution. In Vmx-root mode, the
CPU behaves as usual and it can execute certain new instruc-
tions to manage the virtual machine and enter virtualized ex-
ecution (vm-enter). Any virtual address used by Vmx-root
mode applications will be translated by the page table into
a physical address as usual. Meanwhile, in Vmx-non-root
mode, the CPU is restricted from performing certain instruc-
tion set architecture behaviors, and these behaviors cause a
vm-exit that results in a transition into Vmx-root mode. The
underlying native system in Vmx-root mode is then able to
have full control of the virtual machine running in Vmx-non-
root mode. In Vmx-non-root mode, any address used by an
upper application (referred to as a guest virtual address) will
first be translated by the page table into a guest physical ad-
dress and then be translated by the extended page table into
a final machine address. The extended page table is the main
hardware support offered for memory virtualization.

The VMCS (Virtual Machine Control Structure) is a data
structure that is used to define the behavior of the virtual
machine. For example, setting appropriate bits in the VMCS
determines the interrupts that initiate a vm-exit.

Obja Obja
Virtual Obj b Obj b
pages

Objc Obj ¢

v 14 14

:
‘S >
Q
©
£

Obja Obja
Physical Objb Objb

ages
pag Objc Obj c
I 4 I 4

Figure 2. Fine-grained monitoring without virtualization.

3. Design

In this section, we first introduce a design without the sup-
port of virtualization hardware, that achieves static fine-
grained memory access monitoring only using a memory
allocator, and the normal page table. Then we present an
improved design that uses the virtualization hardware’s ex-
tended page table to achieve dynamic adjustment of moni-
toring granularity.

Note that in the design and implementation sections we
discuss and show how to monitor writes by write-protecting
the corresponding pages (changing the protection bit to be
read-only in the page table), monitoring reads can be done
in a similar manner.

3.1 Fine-grained Monitoring Based on Page Protection
— No Virtualization Hardware

In order to monitor the access to objects of any size, the
simplest way is to give each object a single page and then
to write-protect its page. If a page is written, then we will
know that the corresponding object is write-accessed. How-
ever, this may introduce two kinds of overhead: (1) we ac-
tually allocate a physical page to store each object and thus
there will be a huge waste of physical memory if there are
many small objects; (2) we will use a large range of virtual
memory and cause many more TLB misses, leading to a sig-
nificant performance overhead.

In order to solve the above problems and achieve fine-
grained monitoring, we adopt the mechanism shown in Fig-
ure 2. As an example, we divide a virtual page into two parts
logically: the upper half and the bottom half. Objects allo-
cated in the upper half just reside in the same virtual page. If
we find an object to be allocated in the bottom half of the vir-
tual page, we create a new virtual page and put the object in
the corresponding place of the new virtual page (the object
c in Figure 2). In order to reduce the physical memory us-
age, we map the two virtual pages to the same physical page.
Then we write-protect the two virtual pages. If, for example,
the second virtual page (containing object c) is written, we
will know that only the bottom half of the page content is
modified. This mechanism is implemented by our memory
allocator and the granularity of memory access monitoring

is the page size divided by 2 for the scheme in figure 2. Sim-
ilarly, we can further divide a virtual page into four parts
or eight parts to reduce further the monitoring granularity.
This design solves two of the overhead problems raised in
the previous paragraph: (1) we map multiple virtual pages
to one physical page to reduce physical memory usage. The
only increase in physical memory usage is for storing more
slots in the page table; (2) we do not give each object a sin-
gle virtual page. Instead, we divide one virtual page into 2 or
4 parts. In this way we can limit the usage of virtual mem-
ory and thus limit the TLB misses incurred in comparison to
a scheme where a single object is allocated on each virtual
page.

Out-of-Bounds Access. As two objects in different vir-
tual pages may reside in the same physical page, an ob-
ject may be modified through another object’s virtual page.
However, we argue that this situation only happens in
buggy codes which do out-of-bounds accesses. For exam-
ple, an application allocates an object a and an object b
(both of size 2048) through malloc(2048). Our heap re-
turns an address 0xB0001000 for object a and an address
0xB0011800 for object b. Objects a and b are not in the
same virtual page but they reside in the same physical
page p. From the programmer’s view, the address range of
object a is [0xB0001000, 0xB0001000+2048]. Normally,
an application will not access the virtual address range
[0xB0001000+2048, 0xB0001000+4096] (accessing this
range may change object b) because this address range
has not been given to the application and is invisible to
the program. A similar situation holds for accesses to ob-
ject b. Above all, normally programs should just operate on
the valid address ranges obtained from memory allocators
(through malloc). In this paper we do not handle out-of-
bounds memory access. If an upper application performs an
out-of-bounds access, then our tracking system will result in
a buggy state. Programs performing out-of-bounds accesses
contain bugs and are likely to have unpredictable behaviour.

Objects That Cross A Divided Page Boundary. In the
example above we divide each virtual page into 2 parts.
There may be objects that start from the upper half of a
page and cross the half boundary. In this case we just put
the object in the first virtual page that represents the upper
half. It crosses the half boundary but there will be no object
overlapping with it in the underlying physical page.

Large Objects That Cross Multiple Pages. For large ob-
jects that cross multiple pages, our system behaves the same
with traditional mechanisms that just do traditional one-to-
one mapping. We argue that our system aims to achieve fine-
grained monitoring and we focus on applications that use
a lot of small objects. Furthermore, large objects that cross
multiple pages will not benefit nor degrade with our system.

3.2 Going Flexible — with Virtualization Hardware

Our fine-grained monitoring design introduced in the previ-
ous subsection has a problem. That is, the monitoring gran-

Guest Virtual

<:| Adjust the
page table

Guest Physicall

Machine

Qo |To|e —

(a)

Monitor at
EPT

alo|o|e —

(b)

Figure 3. Fine-grained dynamic monitoring with virtualization.

ularity is determined statically at the beginning of the pro-
gram. We cannot adjust the monitoring granularity during
execution. For the objects, we have only one chance to deter-
mine where to put them (at object allocation time). After the
malloc, we cannot move them because upper applications
will always use the first allocated virtual addresses returned
by malloc to access them.

The ability to dynamically move objects transparently is
important. For example, in the example shown in Figure 2, if
we find the divided two virtual pages (one containing object
a and b and another one containing c) are always written
together, a better way to reduce monitoring overhead (and
hence to reduce the page faults) is to move the three objects
(objects a, b, and c) together into one virtual page. However,
we cannot achieve this in the current page-level monitoring
design.

In order to move objects dynamically and transparently
(thus, to achieve dynamic adjustment of monitoring gran-
ularity), we need to use virtualization hardware features
where an additional level of address translation (Intel 2013)
is available. Modern CPUs with virtualization support of-
fer at least two modes, for example, Intel CPUs have: (1)
Vmx-root mode and (2) Vmx-non-root mode (Intel 2013).
In Vmx-non-root mode, the process address (guest virtual
address) will first be translated by the page table to a guest
physical address and then be translated by the extended page
table to the final machine address. Figure 3 illustrates how
the two levels of address translation enable dynamic ad-
justment of memory access monitoring granularity in our
scheme. In this example, we divide a virtual page into four
equal parts. At the first level of mapping (the page table
level), we perform a one-to-one mapping. Then at the second
level (extended page table), we map the four pages (guest
physical page) into one (machine page), in order to reduce
physical memory usage. In this architecture, the first level
page table is used to remap guest virtual addresses to guest
physical addresses, in order to adjust the granularity of mem-
ory access monitoring. At the second level of the extended

page table the memory access monitoring is performed by
write protecting pages. As Figure 3(a) shows, we first write-
protect the four guest physical pages in the extended page
table. If, for example, the guest physical page d is written,
we will know only the last quarter of the page content is
modified. Moreover, if we find the guest physical page c
and d are always modified together, a better way is to merge
them together into one page. Here we can modify the page
table at the first level to achieve this. Figure 3(b) shows how
to do this. We just remap the guest virtual page d to guest
physical page c. Hence, now the guest physical page c ac-
tually contains two parts (c and d). If this page is further
modified and the extended page table fault is triggered, we
will know that the bottom half of the page content (object
¢ and d) were modified. By doing this we can dynamically
adjust the monitoring granularity during execution.

There are two benefits of this design: (1) when we ad-
just the monitoring granularity, we do not actually move any
parts or objects from one page to another. We just change
page table entries to perform remapping. There is no ob-
ject copy overhead; (2) we can expose the first level of the
page table to user programs. Thus, user programs can mod-
ify the page table directly to do remapping without calling
into the system kernel. There is no context switch overhead.
The kernel can use the extended page table to prevent upper
guest applications from accessing unauthorized addresses.
This second benefit is innovated by extending previous im-
plementation work in Dune (Belay et al. 2012).

3.3 Dynamic Strategy

We have shown how to achieve flexible granularity with
the support of virtualization hardware. We offer the ability
to transparently and dynamically adjust granularity at run
time. This is the core mechanism of this paper. For when,
and how to adjust granularity, we argue that this dynamic
adjustment strategy should be determined on a case-by-case
basis, and should be determined by the upper application
use-case scenarios.

For example, in the incremental checkpoint use-case, our
dynamic strategy is history-based. We undertake periodic
sampling, by first write protecting all guest physical pages,
and then recording the set of modified guest physical pages
using the page fault mechanism. Then after expiration of
a timer, we analyze all records and write protect all the
guest physical pages again. When we find any guest physical
pages that are frequently modified, (such as when they are
modified in several previous sampling rounds), we try to
merge them together. An additional issue is to determine
when to separate merged pages, as after merging we will
only be able to know which merged large address part is
modified (for example the merged part object c and d shown
in Figure 3(b)). We cannot know which single small part
(for example the merged address parts of an object c or
d, as shown in Figure 3(b)) is modified. Our strategy for
this is to separate pages completely after a certain period
and then to merge them again gradually. We will discuss
this strategy later in the experimental section. The goal of
such a strategy is to enable the fine-granularity mapping to
dynamically adjust to different program execution phases
where the locality of write access behaviour may change
over time.

4. Implementation

Our implementation is based on Linux kernel 3.16 and con-
tains two parts: (1) a kernel module for managing the ex-
tended page table and supporting virtualization execution at
process-level and (2) a runtime library for memory alloca-
tion and managing the normal page table exposed to user
applications (as we have two levels of address translation,
we can expose the first level of the page table to upper guest
applications and at the same time guarantee safety; see Sec-
tion 2.2).

4.1 Kernel Module for Process-Level Virtualization

We adopt the implementation strategies deployed in Kvm
(Kivity et al. 2007) and Dune (Belay et al. 2012) to manage
the virtualization hardware and related data structures (such
as VMCS (Intel 2013)). Dune is a process-level virtual ma-
chine that exposes privileged information and instructions
to guest applications. Dune exploits Intel processors’ priv-
iledged levels exposed as rings, where virtualization support
is used to guarantee safety whilst allowing applications to
run at the most priviledged level in ring 0, where they can
access and modify the guest virtual to guest physical ad-
dress page table information. Note that applications are pre-
vented from modifying the extended page table. The execu-
tion within Dune is mainly based on a loop (as shown in Fig-
ure 4): Dune first sets up all data structures for virtualizated
execution and performs a VM-enter instruction to allow the
CPU to execute user code in Vmx-non-root mode. The pre-
cise circumstances when an application needs to perform a
VM-exit to execute kernel code, such as on performing a

Vm-enter

VMX-ROOT

Vm-exit, page fault,
Interupt etc.

Initialize data;
Main loop{
> exit_reason =Vm_enter(); ----—-________
! T Execute
If(exit_reason == PAGE_FAULT) «.__ : application
T v code;

L handle_page_fault();
s Jf(exit_reason == VM_CALL)

Figure 4. Control Flow of Virtualized Execution.

system call or handling an interrupt, are configured using the
VMCS data structure. On a VM-exit, an application returns
back to Vmx-root mode in the main loop. In the loop, Dune
will handle the cause of the VM-exit (due to system call or
interrupt or an EPT violation (Intel 2013)) and then go back
to Vmx-non-root mode to continue running user code. All
user code is executed in Vmx-non-root mode and, all ker-
nel code is executed in Vmx-root mode. The virtualization
mechanism is used to separate privileged execution modes
instead of the protection ring 0 for kernel and ring 3 mecha-
nisms typically used for the execution of non-virtualized ap-
plications. For system calls from applications, Dune replaces
them with vmcalls so applications are actually issuing vm-
calls for kernel services (here, a vicall causes a VM-exit so
Dune can handle it properly and securely in the main loop.).

Our implementation, like Dune, permits applications to
run at ring 0, so that they can modify the (normal) guest page
table (the first level of address translation) directly. At the
Vmx-root mode, we additionally implemented features re-
lated to managing the extended page table for the enhanced
functionality of our system, along with corresponding inter-
face functions (vmcalls) to our upper guest application li-
brary. The main vmcalls we implemented are described as
follows (their usage will be discussed later in our library im-
plementation):

e (I) ept_map_to(addrl, addr2, len): This vmcall maps two
guest physical regions together into the same machine
address region.

e (Il) ept_mprotect(addr, len, flag): Like mprotect(), this
vmcall changes the protection mode of a guest physical
region in the extended page table.

Moreover, we provide an EPT violation handler to han-
dle EPT page faults that are triggered by accessing write-
protected guest physical pages. In the handler, an array
records which page is accessed and then write-protection
is disabled for the faulting guest physical page. The array
can then be used in our library to perform memory access

analysis and our library can use ept_mprotect() to reenable
write-protection of guest physical pages again during the
next periodic sampled interval of program execution.

We enable timers to be set for periodic interval sampling
for our memory access monitoring by leveraging the sup-
port from virtualization hardware to instrument interrupts
to Vmx-non-root mode execution (Intel 2013). Specifically,
in the main loop (Figure 4) a cycle counter is implemented
using the RDTSC time stamp counter instruction. If a set
threshold is reached then we instrument a certain interrupt
using the VMCS (Belay et al. 2012) and then VM-enter is
executed to transition to Vmx-non-root mode. In the Vmx-
non-root mode the virtual machine will receive the interrupt
and we can handle it in our library. At this point we can trig-
ger appropriate analysis of memory access and implement
any dynamic changes to the granularity of memory access
monitoring that may be required.

4.2 Runtime Library

Our runtime library mainly manages memory allocation and
the normal page table (the first level of address translation
shown in Figure 3). As the applications are running at ring 0,
it can access the page table directly through the CR3 control
register that contains the page directory base.

Generally, a memory allocator requests large blocks of
virtual memory, referred to as a superblock from an operat-
ing system using mmap, and then allocates memory chunks
from the superblock to upper guest applications (serving
malloc and free). Our implementation is based on the mem-
ory allocator Hoard (Berger et al. 2000) and our implemen-
tation for these two parts is shown in Figure 5 and described
as below where we assume that a virtual page is divided into
two parts as described in the design section:

¢ (I) When our memory allocator asks for superblocks from
an OS using mmap, the allocator must request multiples
of the desired size based on the granularity. For example,
if the granularity is set to the page size divided by 2 then
we must request twice the application’s requested size.
After allocation, we set the normal page table to make
the guest virtual address regions have a one-to-one map-
ping to guest physical regions (as shown in Figure 3(a)).
Specifically, here we map the guest virtual address to the
same guest physical address. This step will not allocate
the real machine page because there is an underlying ex-
tended page table that must be set by the kernel mod-
ule. Then we use the vmcall ept_map_to() to inform our
kernel module that the two corresponding guest physical
regions should be mapped to the same machine address
region (as shown in Figure 3(a)). Finally if any guest vir-
tual address is touched, first it will be translated to the
same guest physical address, and then it will trigger an
EPT violation. Our kernel module will handle the EPT
violation to correctly set the corresponding EPT entry.

//this will be called when serving malloc
allocate_superblock(size) {

//allocate double space

addr = mmap(0, size*2, ...);

//set the one-to-one mapping in page table
guest_virtual_to_guest_physical(addr, addr, size*2);

//map the two guest physical space to the same machine space
ept_map_to(addr+size, addr, size);

//write-protect all the guest physical page
ept_mprotect(addr, size*2, READ);
}

//this is for upper app to do dynamic allocation
malloc(size){
if(no_space())
allocate_superblock(SUPER_SIZE); //if no enough superblock

addr = internal_heap_malloc(size); //allocate through Hoard
if(in_upper_half(addr)) //if the addr is in the upper half of a page
return addr;
else if(in_bottom_half(addr))
return adjust(addr); //this is to change another place

Figure 5. Code of Malloc.

e (I) When serving malloc, our memory allocator first
behaves as if only one guest virtual block (not 2x) is
allocated by the OS each time. Thus it will return an
address for the object in the single block. Then we test
if the returning address is at the bottom half of the page.
If so, we will adjust the returning address to return the
corresponding address in the second block (the doubled
superblock). This address will finally be translated by the
two levels of page table to the same machine page with
the first address. In this way we spread objects sparsely
in more virtual pages and cause no problems.

Second, as we discussed in Section 3.3, the dynamic strat-
egy is up to upper applications. Here our library offers the
basic support to perform sampling and dynamic adjustment
of the monitoring granularity. For example, a signal han-
dler can be registered to perform periodic sampling. The
signal handler uses one slot in the interrupt descriptor ta-
ble (IDT) (Belay et al. 2012). Time is counted in our ker-
nel module and the interrupt is instrumented to user appli-
cations as described in the previous subsection. Every time
the kernel module handles an EPT violation caused by writ-
ing a write-protected guest physical page, it keeps a record
of these pages. We can do analysis and remapping based on
this record. The remapping is done by simply modifying the
normal page table (the first level of address translation as
shown in Figure 3) as introduced in the design section. After
sampling has finished, a vmcall (ept_mprotect) is issued to

write-protect these guest physical pages again and the next
round of sampling begins.

4.3 Page Size

Currently we are working with 4K pages in both levels of
page table for fine-grained monitoring. Future work will
investigate the use of superpages.

5. Use Case — Incremental Checkpoint

Our flexible page-level memory access monitoring method
can be adopted to improve previous page-based memory ac-
cess monitoring tools in order to achieve finer-granularity
results with lower overhead. For example, our work is likely
to be of direct benefit to garbage collection (Boehm et al.
1991), improving strong atomicity of Software Transactional
Memory (Abadi et al. 2009), efficient deterministic multi-
threading (Liu et al. 2011) (Lu et al. 2014), and check-
pointing (Kannan et al. 2013). These studies all use page
protection to monitor memory access. Here we implement
an application-initiated (Kannan et al. 2013) incremental
checkpoint application to test our work. Incremental check-
point is chosen as an interesting test use-case because it has
a natural tradeoff between copying and monitoring over-
heads. For example, if no monitoring is performed, then
all data must be copied at checkpoint time (i.e., full-sized
checkpoint), and the copying overhead will be very large.
Alternatively, if fine-grained monitoring is performed us-
ing page fault and byte-by-byte comparison, then the mon-
itoring overhead will dominate and be unacceptably large.
Currently, incremental checkpointing is usually performed
at page-level granularity that offers the best possible trade-
off.

Our methods can reduce the monitoring granularity, and
therefore reduce the volume of checkpointed data to be
stored or copied. We implement an incremental checkpoint
system based on heap storage in an application-initiated way.
To implement incremental checkpoint, we first write-protect
all the guest physical pages using ept_mprotect() and register
a timer clock handle. The EPT violation handler, triggered
by accessing a protected guest physical page, records the
information of that page. At checkpoint time, when the pe-
riodic timer has expired, we copy all modified data into files
and perform a fsync to wait for the checkpoint to finish.
Then, dynamic adjustment of the monitoring granularity can
be performed by adjusting mapping relationships in the page
table. Then the next round of the incremental checkpointing
begins. The checkpoint interval and the dynamic adjustment
strategy of monitoring granularity are discussed in the Ex-
periments section.

Discussion Besides page protection, binary instrumenta-
tion (Luk et al. 2005) and compiler instrumentation (Lat-
tner and Adve 2004) are two other common mechanisms
to achieve memory access monitoring. We argue that these
three common mechanisms suit different situations. Binary

instrumentation (Luk et al. 2005) and compiler instrumen-
tation (Lattner and Adve 2004) can achieve byte-level mon-
itoring albeit at considerable overheads if applied program
wide. Page-level monitoring has coarser-granularity moni-
toring and is often used in different applications such as
in incremental checkpointing where byte-level monitoring
would incur excessive overheads. This paper improves the
traditional page-level monitoring mechanism by enabling
dynamic adjustment of monitoring granularity at sub-page
(object-level granularity). Thus in this paper we only un-
dertake comparisons with the traditional page-level moni-
toring mechanism. Moreover, dirty bit scanning (Li 2003) or
page modification logging (Intel 2015) could be used to im-
prove the performance against our page protection scheme in
some cases. However, these schemes merely apply different
mechanisms to determine which pages are modified. Thus,
the main contribution and novelty of our work (the flexible
transparent tool functionality) is not affected as we can eas-
ily experiment with other mechanisms in future work.

6. Experiments

In this section we focus on demonstrating the overhead of
the virtualized execution and the overhead of memory ac-
cess monitoring in comparison to traditional page-level tech-
niques. Furthermore, the checkpoint use-case demonstrate
that our fine-grained memory access monitoring can effec-
tively reduce the volume of checkpoint data compared to
current page-level techniques.

6.1 Methodology

We selected two types of applications as our benchmarks:
(1) object-intensive benchmark applications that frequently
allocate many small objects. We selected four applications
from the STAMP benchmark suite (Minh et al. 2008) as
shown in Figure 6. They are from different application do-
mains and they allocate many objects; (2) a database system.

According to the design of our mechanism, our tool fits
for applications that allocate a lot of small objects. For
this reason we choose the benchmarks from the STAMP
benchmark suite. Although the applications in STAMP are
mainly for testing transactional processing, they can also
represent object-intensive applications. Moreover, database
systems are another good candidate for our experiments.
Most database systems manage a large number of small
records and thus our tool will also work well in this sce-
nario. Here we choose the Tokyo-cabinet (Hirabayashi 2010)
lightweight database management system that can manage
its database in-memory or in file. The main difference be-
tween Tokyo-cabinet and other database systems, is that
Tokyo-cabinet uses a general memory allocator (malloc)
whilst other database systems, such as memcached (Fitz-
patrick 2004) manage object allocation in their own cus-
tomized way. Tokyo-cabinet is directly aligned with the
work in this paper as we offer a malloc interface that trans-

Allocated

Benchmarks Input Number of Obj Memory (GB)
bayes -e-1-il -n4 -p10 -q1 -r32768 -s1 -t1 -v32 48441744 1.34
intruder -al0 -116 -n1048576 -s1 -t1 14990453 0.62
vacation -c1 -n10 -q90 -r1048576 -t524288 -u80 11487872 0.43
genome -g65536 -n2097152 -s128 -t1 16957591 0.78

Figure 6. Object-Intensive Benchmarks.

Benchmarks | Number of Obj M?l:llg:;t:((;lB)
10M @ 64B 10000021 1.28
5M @ 128B 5000021 0.96
IM @ 1024B 1000021 1.09

Figure 7. Tokyo-cabinet Benchmarks. (xM@yB means we insert XM records. Each record is of size yB)

Normalize Run Time (without page protection)

Normalized TLB Miss

3.5
3.0
2.5
2.0
15
1.0
0.5
0.0

[Base

| vm-s-1f-----

3 vm-s-2

[| . vm-s-4["

intruder

10M @ 64B
5M @ 128B

bayes

nfl _nil

13 vm-s-24

-amn il .

vacation

intruder

.
10M @ 64B 1M @ 1024B
genome 5M @

(b)

128B

Figure 8. Overhead with virtualization execution. (Base means bare-metal execution without virtualized environment. Vm-s-n
means our virtualization execution and we divided a virtual page into n parts without dynamic adjustment (static strategy).)

parently spreads objects across virtual pages. In our experi-
ments, many records of different sizes (as shown in Figure
7) are inserted into the database and the records in memory
are managed using a hash table. All the heap data is check-
pointed periodically in order to test and compare our work
with traditional page-based checkpoint.

First, we run the benchmarks just using virtualization
with the two levels of page table. The page-protection is
turned off. In this way we can show the overhead of pure vir-
tualized execution. Second, we turn on the page-protection
to show the monitoring overhead without copying any data.

Finally, we then show the overhead and benefits of our ap-
proach to the incremental checkpointing use-case.

The experimental platform is an Intel server equipped
with 2.2GHz 12-core CPU and 16GB of physical memory.
The operating system is Linux 3.16. In our experiments
we set the checkpoint interval to be 5s (unless otherwise
specified) in order to demonstrate a relatively intense case
for checkpointing.

6.2 Results

Note that from now on the baseline execution time is for a
bare-metal process (not running in virtualized environment).

=
o
g 45 [Base
‘é | vms2| b
Q 4. 0HC3 vm-d-2}----- -
g Bl vm-s-4
8 350 vmda|)
£ 3.0
225
)
£120
i
c 15
&
T 1.0
N
= 0.5
£
£ 0.0
2 vacation 10M @ 64B
intruder genome 5M @ 128B
(a)

[Base

B vm-s-2
il n | Z3 vm-d-2|]
% B vm-s-4
w -3 vm-d-4 4
[
o
©
a
2 J
[}
N
= J
£
(=}
z

vacation 10M @ 64B 1M @ 1024B
intruder genome 5M @ 128B

(b)

Figure 9. Overhead with page protection. (Base means bare-metal execution with traditional page protection. Vm-d-n
means our virtualization execution and we divided a virtual page into n parts with dynamic adjustment. Vm-s-n means our
virtualization execution and we divided a virtual page into n parts without dynamic adjustment (static strategy).)

We show the overhead of virtualization execution in Fig-
ure 8, which shows the overhead of using two-level-address-
translation (more TLB misses) in a virtualized execution en-
vironment with page protection turned off. Here the non-
baseline benchmarks have two levels of page tables. The
baseline is a bare-metal process (not running in virtualized
environment). In detail, by comparing vm-s-1 with the base-
line, we will get the overhead of just running a program on
our virtual machine without any many-to-one-mapping of
virtual pages. For all cases shown, our system introduces
a maximum of 2x overhead due to increased TLB misses
and the overheads of the virtualization execution environ-
ment that are primarily due to VM enter and exit. Bayes has
an unusual overhead result because the application’s own
memory access pattern already has very poor cache local-
ity, even without any additional memory access monitoring
overheads, thus the relatively large increase in TLB misses
for this benchmark under virtualized execution do not dom-
inate performance.

Second, we turn on the page-protection to show the mon-
itoring overhead without copying any data. Figure 9 shows
the monitoring overhead with page protection but no copy-
ing for checkpoint data. The baseline is bare-metal pro-
cess (not running in virtualized environment) with tradi-
tional page protection. The page fault overhead dominates
in this scenario. Here, we can see that the 2 parts design
(vm-x-2) is normally faster than the 4 parts design (vm-x-

4), because the 2 parts design introduces fewer page faults.
Moreover, we can see our dynamic strategy introduces fewer
page faults, and is generally faster. Here our dynamic strat-
egy is: for x parts design, we merge possible pages at every
checkpoint and entirely separate virtual pages after every x
checkpoints. This is because by doing the merge we can ef-
fectively reduce the page faults to reduce the execution time
and thus do less checkpointing. By following such a strategy
we have inherently placed a priority on merging. Note, we
do not expect such a strategy to be optimal, moreover it is
only intended to illustrate the potential benefits of dynamic
granularity adaptation.

Finally, we perform an incremental checkpoint with mon-
itoring and data copying. The overhead of our incremental
checkpoint compared with traditional page-level checkpoint
is shown in Figure 10. The baseline is a bare-metal process
(not running in a virtualized environment) with traditional
page protection. Generally the 4 parts design (vm-x-4) re-
duces the volume of checkpoint data, more than the 2 parts
design (vim-x-2), and our dynamic strategy (vm-d-x) reduces
the volume of checkpoint data, more than the static strategy
(vm-s-x). As discussed before, although the dynamic design
may copy more data by merging pages together, it reduces
software overhead (as shown in Figure 9) and makes pro-
grams faster. Thus it actually reduces the number of check-
point rounds and reduces the volume of copied data. Gen-
erally, our dynamic method can improve performance up

1.4
1.3

Normalize Run Time (with checkpoint)

---{C Base
co...|EEE vm-s-2
.| vm-d-2

3 vm-d-4

L
vacation
intruder

genome

10M @ 64B 1M @ 1024B

5M @ 1288

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0—

Normalized Amount of Copied Data

L

[Base

B vm-s-2
1= vm-d-2
| |[. vm-s-4 | |
3 vm-d-4

vacation
intruder

genome

10M @ 64B 1M @ 1024B

5M @ 1288

(b)

Figure 10. Overhead with checkpoint. (Base means bare-metal execution with traditional page protection.)

5s 10s

Checkpoint Interval

Normalized Checkpoint Volume over Base(5s)

-|CJ base H
| vm-2-d H

Normalized Execution Time over Base(5s)

{3 base H
| vm-2-d H

5s 10s

Checkpoint Interval

Figure 11. Detailed comparison with baseline on the benchmark genome. (Base means bare-metal execution with traditional

page protection)

to 10% over a statically determined access monitoring. For
some benchmarks like vacation, the total amount of reduced
checkpoint data is not sufficient to give a performance ben-
efit over the runtime overhead we introduce. However, by
enlarging the problem scale or shortening the checkpoint in-
terval, we may still get benefit.

When we are varying the checkpoint interval, the results
are shown in Figure 11. Generally our fine-grained monitor-
ing mechanism reduced the volume of checkpoint data and
obtained better performance. Moreover, as we can see from
Figure 11, if we increase the checkpoint interval, the total
copied amount decreases, closing the performance gap be-
tween our work and the normal page-level checkpoint. Thus
we argue that our work is suitable for intense monitoring sit-
uations.

Above all, the experiments show our flexible page-level
monitoring mechanism has great potential to do monitor-
ing precisely and reduce the checkpoint data. This could im-
prove the performance and the life time of non-volatile stor-
age. Moreover, the experiments also show the flexibility of
our system to change the monitoring granularity based on
traditional page protection mechanism. Further our system
is likely to be able to meet the demands of different appli-
cations as it is possible to adjust its monitoring granularity
dynamically and transparently.

Discussion The main contribution of this paper is the ex-
ploitation of virtualization hardware in order to provide a
flexible memory access monitoring mechanism that is trans-
parent to unmodified upper (guest) applications. We have
presented the design and implementation of a fundamental

tool that supports transparent and dynamic adjustment of
access monitoring granularity. The virtualization overheads,
and the potential capabilities of our tool are described. The
incremental checkpoint use case is designed to showcase the
features and capabilities of our tool. We do not seek to claim
that the use-case is state-of-the-art. In this paper, we demon-
strate that even a very simple dynamic strategy achieves a
modest performance benefit over static schemes. From the
results we can see the benefit is not very impressive. How-
ever, we argue that our goal is to provide the fundamental
function (flexibility for adjustment of monitoring granular-
ity), and outlining specifically the limits of performance ben-
efit is not the core focus of our contribution. Users of our tool
can develop various dynamic adjustment strategies tailored
to reflect the memory access patterns of their applications.
Our work in this paper is to demonstrate we can achieve this
because our tool is sufficiently flexible. Therefore, in this
paper we focus mainly on describing the tool, and intend to
include other more in-depth use-cases and evaluations in fu-
ture work. Last, the checkpoint phase could be overlapped
with the compute phase in order to further optimize perfor-
mance of the checkpoint tool. We argue that this is totally
complementary to our work. The use-cases are designed to
clearly showcase the features of our tool, and not to deliver
state-of-the art exemplars of use-cases.

7. Related Work

Many-to-one mapping with page-protection is used in some
previous work. Dhurjati and Adve (Dhurjati and Adve 2006)
deploys it to efficiently detect all dangling pointer uses at run
time. Abadi et al (Abadi et al. 2009) adopts it to efficiently
achieve strong atomicity in Software Transactional Memory
(STM) systems. However, in both these studies, only a single
level of address translation is deployed, and they cannot
dynamically move objects. Our work has more flexibility
compared to previous work. Also we limit the virtual space
overhead by dividing a page into several predefined parts to
limit TLB misses.

In comparing with previous work (Dhurjati and Adve
2006), our work here differs mainly in two points: (1) the
previous work (Dhurjati and Adve 2006) sees virtual space
as a limitless resource and gives each object a virtual page.
This will lead to an explosion in the usage of virtual space
and put huge pressure on the TLB. In our work we limit the
usage of virtual space by only dividing a virtual page into
several parts. This will achieve much better performance for
applications that allocate a lot of objects; (2) we rely on
EPT to enable the dynamic and transparent movement of
objects. These two points are both core design aspects that
differentiate our work.

Modern 64-bit CPUs have an abundant virtual address
space. Archipelago (Lvin et al. 2008), DieHard (Berger and
Zorn 2006), and DieHarder (Novark and Berger 2010) lever-
age the large address space to spread objects sparsely in

order to achieve fault tolerance. In our work, we use it to
achieve fine-grained memory access monitoring by overlap-
ping virtual pages. Also the abundant virtual address space
of modern CPUs offers further opportunities for innovation
in operating system design implementations (Chase et al.
1994).

Other methods for memory access monitoring include dy-
namic binary (Probst 2002), and compiler inserted instru-
mentation (Lattner and Adve 2004). Dynamic binary instru-
mentation tools, such as Pin (Luk et al. 2005), Valgrind
(Nethercote and Seward 2007), and Lightweight Memory
Tracing (Payer et al. 2013), introduce overhead when dy-
namically translating applications’ codes. Compiler instru-
mentation also introduces overhead by the insertion, and as-
sociation of a function call, with every memory access. We
argue that these common mechanisms suit different situa-
tions. Binary instrumentation and compiler instrumentation
can achieve byte-level monitoring and they are mutually re-
placeable in many scenarios. Page-level monitoring is more
coarse-grained and is often used in different applications,
such as making incremental checkpoint. Sampling (Arnold
and Ryder 2001), chooses to ignore some accesses in order
to get better performance, but this is not comparable with
our mechanism and is also not suitable for some use-case
scenarios such as for checkpointing.

Dirty bit scanning (Li 2003) or page modification log-
ging (Intel 2015) could be used to improve the performance
against our page protection scheme in some cases. However,
these schemes merely apply different mechanisms to deter-
mine which pages are modified. Thus, the main contribution
and novelty of our work (the flexible transparent tool func-
tionality) is not affected as we can easily experiment with
other mechanisms in future work. Our work is also appro-
priate for the wide range of tools that can benefit from effi-
cient memory access monitoring such as data-race detection
(Savage et al. 1997), checkpointing (Dong et al. 2011), and
deterministic processing (Devietti et al. 2009) (Bergan et al.
2010) (Liu et al. 2011).

Dune (Belay et al. 2012) is a process-level virtual ma-
chine that exposes privileged features to applications whilst
relying on virtualization hardware to guarantee safety. Kvm
(Kivity et al. 2007) is a Linux kernel module that imple-
ments a traditional virtual machine monitor. Dune shares
some code with kvm in order to manage the details concern-
ing low-level data structures for virtulization.

Hoard (Berger et al. 2000) is an efficient memory alloca-
tor for multi-threaded programs. In this paper we modified it
to spread objects across virtual pages. Other memory alloca-
tors (Ghemawat and Menage 2009) (Shen et al.) could also
be adopted to achieve similar functionality.

8. Conclusion

We have introduced a flexible page-level memory monitor-
ing mechanism based on virtualization hardware. We first

introduced a memory allocator to spread objects over virtual
pages and that overlaps these pages to achieve fine-grained
monitoring. The two-level page tables offered by virtual-
ization hardware were used to achieve dynamic transpar-
ent adjustment of the monitoring granularity without copy-
ing or moving objects in physical memory. The incremen-
tal checkpointing use-case demonstrates our work can effec-
tively reduce the volume of checkpoint data compared with
traditional page-based checkpoint and it can improve per-
formance. We have demonstrated the potential of our work
to be adopted into different use-case situations with differ-
ent requirements for monitoring granularities. Future work
is required to determine how strategies for dynamic adapta-
tion of memory access monitoring granularity could be op-
timized by careful merging and splitting of virtual pages in
order to reduce monitoring overheads.

Acknowledgments

The authors gratefully acknowledge the helpful suggestions
of the reviewers. Thanks for the recommendation to use
the new hardware features (page modification logging) to
improve this work.

The work is partially supported by the The National
Key Research and Development Program of China (No.
2016 YFB0200401), by program for New Century Excel-
lent Talents in University, by National Science Foundation
(NSF) China 61402492, 61402486, 61379146, by the labo-
ratory pre-research fund (9140C810106150C81001).

Additional support from UK EPSRC grants PAMELA
EP/K008730/1, and DOME EP/J016330/1 is acknowledged.
Lujan is funded by a Royal Society University Research
Fellowship.

References

M. Abadi, T. Harris, and M. Mehrara. Transactional memory with
strong atomicity using off-the-shelf memory protection hard-
ware. In ACM Sigplan Notices, volume 44, pages 185-196.
ACM, 2009.

AMD. Secure virtual machine architecture reference manual. Tech-
nical report, Advanced Micro Devices, May 2005.

A. W. Appel and K. Li. Virtual memory primitives for user pro-
grams. Acm Sigplan Notices, 26(4):96-107, 1991.

M. Arnold and B. G. Ryder. A framework for reducing the cost of
instrumented code. Acm Sigplan Notices, 36(5):168-179, 2001.

A. Belay, A. Bittau, A. J. Mashtizadeh, D. Terei, D. Mazicres, and
C. Kozyrakis. Dune: Safe user-level access to privileged cpu
features. In OSDI, pages 335-348, 2012.

T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman.
Coredet: a compiler and runtime system for deterministic multi-
threaded execution. In ACM SIGARCH Computer Architecture
News, volume 38, pages 53—64. ACM, 2010.

E. D. Berger and B. G. Zorn. Diehard: probabilistic memory safety
for unsafe languages. In ACM SIGPLAN Notices, volume 41,
pages 158-168. ACM, 2006.

E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson.
Hoard: A scalable memory allocator for multithreaded applica-
tions. ACM Sigplan Notices, 35(11):117-128, 2000.

H.-J. Boehm, A. J. Demers, and S. Shenker. Mostly parallel
garbage collection. ACM SIGPLAN Notices, 26(6):157-164,
1991.

J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska. Shar-
ing and protection in a single-address-space operating system.
ACM Transactions on Computer Systems (TOCS), 12(4):271-
307, 1994.

J. Devietti, B. Lucia, L. Ceze, and M. Oskin. Dmp: deterministic
shared memory multiprocessing. In ACM SIGARCH Computer
Architecture News, volume 37, pages 85-96. ACM, 2009.

D. Dhurjati and V. Adve. Efficiently detecting all dangling pointer
uses in production servers. In Dependable Systems and Net-
works, 2006. DSN 2006. International Conference on, pages
269-280. IEEE, 2006.

X. Dong, Y. Xie, N. Muralimanohar, and N. P. Jouppi. Hybrid
checkpointing using emerging nonvolatile memories for future
exascale systems. ACM Transactions on Architecture and Code
Optimization (TACO), 8(2):6, 2011.

B. Fitzpatrick. Distributed caching with memcached. Linux jour-
nal, 2004(124):5, 2004.

S. Ghemawat and P. Menage. Tcmalloc: Thread-caching malloc.
goog-perftools. sourceforge. net/doc/tcmalloc. html, 20009.

M. Hirabayashi. Tokyo cabinet: a modern implementation of dbm,
2010.

Intel. Intel r 64 and ia-32 architectures software developers manual.
Volume 3b: System Programming Guide (Part 2), pages 14-19,
2013.

Intel. Page modification logging for virtual machine monitor white
paper. http://www.intel.com/, Jan. 2015.

S. Kannan, A. Gavrilovska, K. Schwan, and D. Milojicic. Opti-
mizing checkpoints using nvm as virtual memory. In Parallel &
Distributed Processing (IPDPS), 2013 IEEE 27th International
Symposium on, pages 29-40. IEEE, 2013.

A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm:
the linux virtual machine monitor. In Proceedings of the Linux
Symposium, volume 1, pages 225-230, 2007.

C. Lattner and V. Adve. Llvm: A compilation framework for
lifelong program analysis & transformation. In Code Generation
and Optimization, 2004. CGO 2004. International Symposium
on, pages 75-86. IEEE, 2004.

K. I. Li. Virtual Memory Primitives for User Programs. ACM,
2003.

T. Liu, C. Curtsinger, and E. D. Berger. Dthreads: efficient de-
terministic multithreading. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles, pages 327—
336. ACM, 2011.

K. Lu, X. Zhou, T. Bergan, and X. Wang. Efficient deterministic
multithreading without global barriers. In ACM SIGPLAN No-
tices, volume 49, pages 287-300. ACM, 2014.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: building cus-
tomized program analysis tools with dynamic instrumentation.

In ACM Sigplan Notices, volume 40, pages 190-200. ACM,
2005.

V. B. Lvin, G. Novark, E. D. Berger, and B. G. Zorn. Archipelago:
trading address space for reliability and security. In ACM
SIGOPS Operating Systems Review, volume 42, pages 115-124.
ACM, 2008.

C. C.Minh, J. Chung, C. Kozyrakis, and K. Olukotun. Stamp: Stan-
ford transactional applications for multi-processing. In Work-
load Characterization, 2008. IISWC 2008. IEEE International
Symposium on, pages 35-46. IEEE, 2008.

N. Nethercote and J. Seward. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. In ACM Sigplan no-
tices, volume 42, pages 89—100. ACM, 2007.

G. Novark and E. D. Berger. Dieharder: securing the heap. In
Proceedings of the 17th ACM conference on Computer and
communications security, pages 573-584. ACM, 2010.

M. Payer, E. Kravina, and T. R. Gross. Lightweight memory
tracing. In USENIX Annual Technical Conference, pages 115—
126, 2013.

M. Probst. Dynamic binary translation. In UKUUG Linux Devel-
opers Conference, volume 2002. sn, 2002.

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Ander-
son. Eraser: A dynamic data race detector for multithreaded
programs. ACM Transactions on Computer Systems (TOCS),
15(4):391-411, 1997.

J. Shen, M. Hamal, and S. Ganzenmiiller. Dynamic memory allo-
cation on real-time linux. Architecture, 86:32.

R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. Martins, A. V.
Anderson, S. M. Bennett, A. Kégi, F. H. Leung, and L. Smith.
Intel virtualization technology. Computer, 38(5):48-56, 2005.

